线性代数:求极大无关组的方法:行阶梯化
linear-algebra-o-the-method-of-maximum-impertinent-groups-do-the-ladder
例子: $\alpha_{1}=(1,1,2,3), \alpha_{2}=(1,3,6,1), \alpha_{3}=(3,-1, a, 15)$ $\alpha_{4}=(1,-5,-10,12)$ $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ 线性相关
求 $a$ 求 $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ 的一个极大无关组,并用来表示其余向量. $\left|\begin{array}{cccc}{1} & {1} & {3} & {1} \ {1} & {3} & {-1} & {-5} \ {2} & {6} & {a} & {-10} \ {3} & {1} & {15} & {12}\end{array}\right| \Rightarrow\left|\begin{array}{cccc}{1} & {1} & {3} & {1} \ {0} & {2} & {-4} & {6} \ {0} & {4} & {a-6} & {-12} \ {0} & {-2} & {6} & {9}\end{array}\right|$ $\Rightarrow 2\left(\begin{array}{cccc}{1} & {1} & {3} & {1} \ {0} & {1} & {-2} & {3} \ {0} & {4} & {a-6} & {-12} \ {0} & {0} & {2} & {3}\end{array}\right)$