正态分布
$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right\}, \quad x \in \mathbb{R}
$$
$$
\begin{array}{lll}
\text{Distribution} & \text{Mean} & \text{Variance} \\
\hline
\text{Point mass at } p & a & 0 \\
\text{Bernoulli}(p) & p & p(1-p) \\
\text{Binomial}(n, p) & np & np(1-p) \\
\text{Geometric}(p) & 1/p & (1 - p)/p^2 \\
\text{Poisson}(\lambda) & \lambda & \lambda \\
\text{Uniform}(a, b) & (a + b) / 2 & (b - a)^2 / 12 \\
\text{Normal}(\mu, \sigma^2) & \mu & \sigma^2 \\
\text{Exponential}(\beta) & \beta & \beta^2 \\
\text{Gamma}(\alpha, \beta) & \alpha \beta & \alpha \beta^2 \\
\text{Beta}(\alpha, \beta) & \alpha / (\alpha + \beta) & \alpha \beta / ((\alpha + \beta)^2 (\alpha + \beta + 1)) \\
t_\nu & 0 \text{ (if } \nu > 1 \text{)} & \nu / (\nu - 2) \text{ (if } \nu > 2 \text{)} \\
\chi^2_p & p & 2p \\
\text{Multinomial}(n, p) & np & \text{see below} \\
\text{Multivariate Nornal}(\mu, \Sigma) & \mu & \Sigma \\
\end{array}
$$
$$
\begin{equation}
\begin{array}{ll}\text { Distribution } & \mathrm{MGF} \psi(t) \\
\hline
\operatorname{Bernoulli}(p) & p e^{t}+(1-p) \\
\operatorname{Binomial}(n, p) & \left(p e^{t}+(1-p)\right)^{n} \\
\operatorname{Poisson}(\lambda) & e^{\lambda\left(e^{t}-1\right)} \\
\operatorname{Normal}(\mu, \sigma) & \exp \left\{\mu t+\dfrac{\sigma^{2} t^{2}}{2}\right\} \\
\operatorname{Gamma}(\alpha, \beta) & \left(\dfrac{1}{1-\beta t}\right)^{\alpha} \text { for } t<1 / \beta\end{array}
\end{equation}
$$
Dist | Mean | Var | $\mathbb{E}(X^2)$ | PDF/PMF | CDF | $M_X(t)$ | $M_X'(t)$ | $M_X''(t)$ |
---|---|---|---|---|---|---|---|---|
$\text{Bernoulli}(p) $ | $p$ | $p(1-p)$ | $p^x (1-p)^{1-x}$ | $pe^t + (q-p)$ | ||||
$\text{Binomial}(n, p) $ | $np$ | $np(1-p)$ | ${n \choose k}p^{k}(1-p)^{n-k}\!$ | $(p e^{t}+(1-p))^{n}$ | ||||
$\text{Geometric}(p) $ | ${\frac {1}{p}}\!$ | ${\frac {1-p}{p^{2}}}\!$ | $(1-p)^{{k-1}}\,p\!$ | $1-(1-p)^{k}\!$ | ${\frac {pe^{t}}{1-(1-p)e^{t}}}\!$ | |||
$\text{Poisson}(\lambda) $ | $\lambda $ | $\lambda $ | $\dfrac{\lambda^x e^{-\lambda}}{x!}$ | $\exp(\lambda (e^{{t}}-1))$ | ||||
$\text{Uniform}(a, b) $ | $\dfrac{a+b}{2}$ | $\dfrac{(b-a)^{2}}{12}$ | $\dfrac{1}{b-a}$ | $\dfrac{x-a}{b-a}$ | ${\frac {e^{{tb}}-e^{{ta}}}{t(b-a)}}\,\!$ | |||
$\text{Normal}(\mu, \sigma^2)$ | $\mu $ | $\sigma ^{2}$ | $\frac1{\sigma\sqrt{2\pi}}\exp\{-\frac{(x- \mu)^2}{2\sigma^2}\}$ | $\exp\{\mu t+\dfrac{\sigma^{2}t^{2}}{2}\}$ | ||||
$\text{Exponential}(\beta) $ | $\beta $ | $\beta ^{2}$ | $\lambda e ^{-\lambda x}$ | $1 - e^{-\lambda x}$ | ||||
$\text{Gamma}(\alpha, \beta) $ | ||||||||
$\text{Beta}(\alpha, \beta) $ |
几何分布:如果每次试验的成功概率是 p,那么 k 次试验中,第 k 次才得到成功的概率是
指数分布:$\lambda$ 单位时间发生次数,比如每天发生多少次。 $\beta = \lambda ^{-1}$: 表示发生一次所经历的周期。
伽马函数
Z 函数
EAT = 150 = p * 100 + (1-p)*280 180p =130